
Installing XR32 Router in Wine under Ubuntu Linux (Dick ZS6RO/ZS0MEE)

The XR32 Router is a Windows 32-bit program. I am successfully operating the Windows XR32 Router on
a Linux operating system using the Wine program and it’s not difficult to duplicate this effort - and its
extremely stable. This configuration has been tested on Ubuntu 10.04, 11.04, 12.04 and 12.10 to date.

The Wine program is not an Emulator! It is a translation layer (or a program loader) capable of running
Windows applications on Linux and similar other POSIX-compatible operating systems. Wine does not
emulate Windows applications on Linux – instead it provides alternative implementations of DLLs that a
typical Windows application calls and a process substitute for the Windows NT kernel. Wine is made of
100 percent Microsoft-free code.

This is my hardware and software list, but XR32 should work on different flavours of Linux distro’s without
any problems. My server carries a lot of other services which have not been compromised with the XR32
configuration.

 Hardware: 1 x PC Intel +2GHz, 1 x 4GB RAM, 1 x 320GB hard drive 1 x DVD W/R drive,

1 x 10/100/1000Mb/s Ethernet port, 4 x USB ports, 5 x RS-232 ports.

 Software: Linux Ubuntu Version 12.10, with KDE installed – (GNOME should work as well).

Wine 1.41, XR32 Version 2.01b.

It is assumed your Linux box is capable of reaching the Internet. It is also assumed you know Linux
sufficiently well enough to be able to change things like file/directory permissions/ownerships etc., and
know your way around the KDE or GNOME GUI.

Start by downloading and installing Wine. To do this, open a terminal window in Ubuntu 12.10 and type;

 ‘sudo apt-get update<enter>’ this updates the repository database, then type;

 ‘sudo apt-get install wine<enter>’ this will fetch the current program from the Ubuntu repository

 database from the Internet and install it.

After the install type ‘wine<enter> in a terminal window - a usage help prompt should appear – Wine is
installed and the Wine defaults should be fine - it defaults to Windows XP, which is what the XR32 Router
appears to like.

Follow the instructions elsewhere in this document to install the XR32 software to the hard drive.
I created a directory called /home/xr32 and downloaded all the relevant XR32 files into this folder.
Make the XR32.EXE file executable with ‘sudo chmod +x /home/xr32/XR32.EXE’.
(Note that all the files are owned by root).

The XR32.EXE and the XROUTER.CFG files are required to run XR32 - the rest of the files can be added
later. Now edit the XROUTER.CFG file with your particulars – don’t worry about ports and interfaces yet –
If you are using the example XROUTER.CFG file ‘rem’ them out with ‘;’ in the left-hand side of each
relevant row for now.

In the XROUTER.CFG file ensure you have the following entries in there. XR32 will complain if the
loopback interface and port are not entered and will not start up. Additional interfaces and ports can be
added later.

;---
; loopback interface, allowing self-connects.
;---
;
; Example 'loopback' interface, allowing self-connects
; without going via an external system
;
INTERFACE=99
 TYPE=LOOPBACK
 ID=Loopback Interface
 PROTOCOL=KISS
 MTU=256
ENDINTERFACE
;

;---
;
PORT=99
 ID=Internal - KISS Internal Loopback.
 INTERFACENUM=99 ; Loopback, KISS
 MHEARD=5
 QUALITY=220
ENDPORT
;

Now create an IPROUTES.SYS text file in /home/xr32’ and place the contents below into this file.

; ZS0MEE-2:MEEXR IPROUTE.SYS Last modified: 20-Jan-13 ZS6RO
;
; <mode> d Datagram (use on very good quality links only).
; v Virtual circuit (better for links with retries).
; n Netrom (for "tunnelling" through netrom-only networks).
; e Encapsulated (e.g. ham IP carried by Internet IP).
; w Route everything via Linux kernel.
;
; ROUTE <default> <portnum> [<gateway> [<mode>]]
; ==
IP ROUTE DEFAULT 0 * w
;

In Windows the NdisXpkt driver allows XR32 to share the Ethernet NIC and have its own IP address, but is
only available for Windows 2000 and XP. The NdisXpkt driver is not used in Linux.

The entry added above into the IPROUTE.SYS file allows the XR32 Router to route everything to the Linux
kernel. After editing the IPROUTE.SYS file and with XR32 still running, type ‘IP ROUTE LOAD<enter>’ in
one of the three consoles provided in XR32, this will update the XR32 routing tables. From one of the
XR32 console windows you should now be able to ping Internet domains, like ‘ping google.com’.

Elsewhere in this documentation it states that ‘IP ROUTE…’ doesn’t require the ‘IP’ in front of ‘ROUTE…’
when adding entries into the IPROUTE.SYS file. It IS required in XR32 version 2.01b as indicated above
in the IPROUTE.SYS file – ensure you include the ‘IP’.

There are a few methods to start the Windows XR32 Router in Linux using Wine. I use the second
method but either is permissible.

1. Make sure you change to the XR32 directory - in a terminal window, type ‘cd /home/xr32’ to
change directories. Now type ‘wine start XR32.EXE’. A window should pop up – this is the XR32
Console window. Great – you are running a Windows XR32 program in Linux with Wine. Now
press ‘Alt x’. A small red window pops up in the Console window with ‘Exit – are you sure’. Type
‘y<enter>’. The XR32 Console window should close and disappear. Type ‘ps -ef|grep -v
grep|grep XR32.EXE‘ in a terminal window. Only the Linux prompt should display. Send the
same command in a separate terminal window when XR32 is running – the process number will be
displayed.

2. I mentioned KDE and GNOME earlier – I use the KDE GUI. In the KDE file manager navigate to
the /home/xr32 directory. Right-click your mouse on the XR32.EXE file, then on the pop-up
window go to ‘open with’ and left-click on ‘wine windows loader’. This should open a similar
XR32 Console window like in the previous paragraph. Now press ‘Alt x’. A small red window
pops up in the Console window with ‘Exit – are you sure’. Type ‘y<enter>’. The XR32 Console
window should close and disappear. Type ‘ps -ef|grep -v grep|grep XR32.EXE‘ in a terminal
window. Only the Linux prompt should display. Send the same command in a terminal window
when XR32 is running – the process number will be displayed.

Now follow the instruction elsewhere in this document to configure the rest of XR32 Router. Remember
that in Linux, ‘COM-1’ is equal to ‘ttyS0’, ‘COM-2’ is equal to ‘ttyS1’, etc.

ooOoo

Configuring LinFBB and XR32 both running on Ubuntu Linux

Hardware: 1 x PC Intel +2GHz, 1 x 4GB RAM, 1 x 320GB hard drive 1 x DVD W/R drive,

1 x 10/100/1000Mb/s Ethernet port, 4 x USB ports, 5 x RS-232 ports.

Software: Linux Ubuntu Version 12.10, with KDE installed – (GNOME should work as well).

Wine 1.41, XR32 Version 2.01b. LinFBB version 7.04L

It is assumed that you have XR32 running with Wine successfully (follow instruction elsewhere in this
document) and that LinFBB is working correctly on your Linux machine.

LinFBB was probably set up to a radio port(s) via the port.sys file. That assumes you are using the AX25
utilities which are usually part of the Linux kernel. If you have more than one radio port on LinFBB,
duplicate the instructions below for each radio port. If LinFBB has a telnet port (port 6300), that will
continue to work as before even after this modification.

 ----------------------- -----------------------

I I I I----o Telnet
I I AX25 I I 6300
I RADIO PORT I------------------------- rem out ----------------------------I LinFBB I
I I connection I I
I I I I

 ------------------------ ------------------------

In LinFBB /etc/ax25/fbb/port.sys file, ‘rem’ out the relevant radio port(s). If you have more than one radio,
work on them one at a time. Assuming you have only one VHF radio port, ‘rem’ it out as below. Remember
to correct the ‘Ports’ and ‘TNC’ parameters. I suggest this so as to keep track of what you are doing.

/etc/ax25/fbb/port.sys

#Ports TNCs
#~~~~~ ~~~~
 1 1

#Com-device Interface Address (Hex) Baud
#~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~
 1 9 **** 0 # Linux AX25 Interface.

Com axports max
#TNC NbCh Device MultCh. Pacln Maxfr NbFwd MxBloc M/P-Fwd Mode Freq
#~~~ ~~~~ ~~~~~~ ~~~~~~ ~~~~~ ~~~~~ ~~~~~ ~~~~~~ ~~~~~~~ ~~~~ ~~~~
 0 0 0 0 0 0 0 0 00/01 ---- File-fwd.
#1 7 1 2m 80 1 2 20 10/20 XUWYL 144.550

#~~

Now again in the /etc/ax25/fbb/port.sys file add the following and change the ‘TNC’ parameters.

/etc/ax25/fbb/port.sys

#Ports TNCs
#~~~~~ ~~~~
 1 2

#Com-device Interface Address (Hex) Baud
#~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~ ~~~~
 1 9 **** 0 # Linux AX25 Interface.

Com axports max
#TNC NbCh Device MultCh. Pacln Maxfr NbFwd MxBloc M/P-Fwd Mode Freq
#~~~ ~~~~ ~~~~~~ ~~~~~~ ~~~~~ ~~~~~ ~~~~~ ~~~~~~ ~~~~~~~ ~~~~ ~~~~
Radio ports.
 0 0 0 0 0 0 0 0 00/01 ---- File-fwd.
#1 7 1 2m 80 1 2 20 10/20 XUWYL 144.550

#~~~
XR32 Router.
 2 10 1 xrfbb 128 1 2 1 00/01 XUWYL XRouter

#~~

In the /etc/ax25/axport file, add the following.

/etc/ax25/axports

#name callsign speed paclen window description
#~~~~ ~~~~~~ ~~~~~ ~~~~~~ ~~~~~~ ~~~~~~~~~
AXIP Tunnel.
 xrfbb ZS0MEE-11 38400 128 1 Link (XR32<->FBB)

#~~~

The /etc/ax25/ax25ipd.conf file converts between AXIP <> AX25. Take note of the highlighted sections.

~~
ax25ipd configuration file for station ZS0MEE-2

Select axip transport. 'ip' is what you want for compatibility
with most other gates ...

socket <ip | udp [udp_orig_port_num] > (default UDP port # is 10093)
#socket udp 93
socket ip

Set ax25ipd mode of operation. (digi or tnc)

mode tnc

If you selected digi, you must define a callsign. If you selected
tnc mode, the callsign is currently optional, but this may change
in the future! (2 calls if using dual port kiss)

#mycall
#mycall2

In digi mode, you may use an alias. (2 for dual port)

#myalias
#myalias2

Send an ident every 540 seconds ...

#beacon after 540
#btext whatever you want in a beacon, but we don’t use it.

Serial port, or pipe connected to a kissattach
device /dev/pts/1

Set the device speed
speed 38400

loglevel 0

Broadcast Address definition. Any of the destination addresses listed
will be forwarded to any of the routes flagged as broadcast capable
routes. ssid of 0 routes all ssid's

#broadcast QST-0 NODES-0
broadcast FBB-0 MAIL-0

ax.25 route definition, define as many as you need.
format is route (call/wildcard) (ip host at destination)
ssid of 0 routes all ssid's

Valid flags are:
b - allow broadcasts to be transmitted via this route
d - this route is the default route

route <destcall> <destaddr> [flags]
route <destcall> <destaddr> [udp [udp_dest_port_no]]

route zs0mee-0 192.168.0.11 bd

-- End of script.

The entry ‘device /dev/pts/1‘ must be exactly as shown. When everything has started up, the ‘1’ may
change, but the syntax must be the same for our startup file to recognize where to place the new number.

The ‘route zs0mee-0 192.168.0.11 bd‘ entry must match your own details. Keep the SSID as ‘-0’ as this
will match any SSID. My LinFBB BBS is ZS0MEE, thus zs0mee-0 will match. The ‘192.168.0.11‘ is from
the XR32 XROUTER.CFG file which we will edit shortly.

The Linux AX25 modules need to do some work now and create a pseudo AXIP link between LinFBB and
the XR32 router. Create a startup file called /etc/ax25/ax25-up which is a shell script.

#!/bin/sh

/etc/ax25/ax25-up

Create a psuedo link between LinFBB and XR32 Router,
Start AX25ipd daemon, ax25d daemon, Mheard daemon,
Start up FBB BBS daemon, XR32 Router.

Version 1.0 22 January 2013. Dick ZS6RO. [First Release]

Loading modules first.
~~~~~~~~~~~~~~~~~
/sbin/modprobe mkiss
/sbin/modprobe ax25

tmpfile="/tmp/$$.startipd.pts"
Create psuedo ports.
~~~~~~~~~~~~~~~~
echo "Starting kissnetd daemon."
killall kissnetd
/usr/sbin/kissnetd -p2 > "$tmpfile" &
echo $! > /run/kissnetd
echo "kissnetd daemon Started."

Give kissnetd time to create psuedo ports.
sleep 2

Now attach ports to relevant apps.
attachthem () {
 read PTS1 PTS2
 echo "Starting xrfbb on $PTS1 and $PTS2"
 /usr/sbin/kissattach -l $PTS1 xrfbb 192.168.0.11
 sleep 1
 # Add device paramaters to ax25ipd.conf file.
 sed -i "s,device /dev/.*$,device $PTS2," /etc/ax25/ax25ipd.conf
 #
 echo "Starting ax25ipd daemon."
 # Start AX25ipd daemon.
 # ~~~~~~~~~~~~~~~~~~
 sleep 1
 killall ax25ipd
 /usr/sbin/ax25ipd -l4
 echo $! > /run/ax25ipd.pid
 echo "ax25ipd daemon Started."
 #
 echo "Starting ax25d daemon."
 # Start ax25d daemon.
 # ~~~~~~~~~~~~~~~~
 sleep 1
 killall ax25d
 /usr/sbin/ax25d &
 echo $! > /run/ax25d.pid
 echo "ax25d daemon Started."
 #
 echo "Starting mheardd daemon."
 # Start Mheard daemon.
 # ~~~~~~~~~~~~~~~~~
 sleep 1
 killall mheardd
 /usr/sbin/mheardd &
 echo $! > /run/mheard.pid
 echo "mheardd daemon Started."
 #
 echo "Starting xfbbd daemon."
 # Start up FBB BBS daemon.
 # ~~~~~~~~~~~~~~~~~~~~~
 sleep 1
 killall xfbbd
 /usr/sbin/xfbbd &

 echo $! > /run/xfbbd.pid
 echo "xfbbd daemon Started."
 #
 echo "Starting XR32 Router."
 # Start up XR32 Router.
 # ~~~~~~~~~~~~~~~~~
 sleep 50
 killall XR32.EXE
 cd /home/ham_services/xr32/
 /usr/bin/wine start XR32.EXE
 echo $! > /run/XR32.pid
 echo "XR32 Router Started."
 #
}

sleep 1
tail -n 1 $tmpfile | attachthem
rm $tmpfile

echo "---"
echo "Finished starting AX25ipd daemon, AX25d daemon,";
echo "Mheard daemon, LinFBB-BBS daemon, XR32 Router.";

exit 0;

--End script.

Don’t start up the ‘/etc/ax25/ax25-up’ shell script file until the XROUTER.CFG has been configured.

Make the ‘/etc/ax25/ax25-up’ shell script file executable with ‘sudo chmod +x /etc/ax25/ax25-up’.

The ‘sleep’ commands give time for the previous command to have carried out its function before
continuing. Remember to make the ‘/etc/ax25/ax25-up’ execute when the Linux machine boots up.

The highlighted section in the ‘/etc/ax25/ax25-up’ file will create a pseudo pipe and place the slave side of
the pipe into /etc/ax25/ax25ipd.conf file where I said that the syntax must be exact (‘device /dev/pts/?’).

This startup file when run will load some AX25 modules, create the pseudo pipe - add the slave end to the
ax25ipd.conf file - the master end of the pipe will be fed to the Linux kernel, then start up the various
daemons and finally start up the XR32 router.

When the ax25-up file has executed, XR32 will have loaded but you won’t see the console !! If you type
‘ps -ef|grep -v grep|grep XR32.EXE‘ in a terminal window, you will see the X32.EXE process running –
take note of the process number. Currently I don’t know how to cure this. I suggest you do what I do and
that is, grep XR32.EXE as shown above, then kill the process ‘kill <process-number>’, then use one of
the two methods to start XR32 as mentioned earlier in this document. One good thing out of this is if there
is a power failure and you aren’t nearby, at least XR32 will start and run properly when the power returns.

Most times when working on XR32 files, you only need to do an ALT-x to kill the XR32 process and then
restart it by one of the two methods mentioned. All other daemons will still function correctly.

Now to configure the XR32 XROUTER.CFG file so that LinFBB will be accessible via the XR32 Router.
We need the following entries to get the radio port and the LinFBB port configured.

;---
; 145.550Mhz 1200bps User-channel Interface.
;---
;
INTERFACE=2
 TYPE=ASYNC
 COM=7 ; COM7=ttyS6. hex=000. IRQ=19.
 FLOW=1 ; RTS/CTS
 SPEED=9600 ; Baud rate between PC and TNC
 PROTOCOL=KISS
 KISSOPTIONS=NONE
 MTU=128
ENDINTERFACE
;

;---
; AXIP Interface for LinFBB.
;---
;
INTERFACE=10
 TYPE=AXIP
 MTU=128
ENDINTERFACE
;

;---
;
PORT=2
 ID=144.550 Mhz. 1200bps. VHF User channel.
 INTERFACENUM=2 ; ASYNC, KISS
 PORTCALL=ZS0MEE-2 ; ZS0MEE-2 connects to XR32
 PORTALIAS=MEEXR ; MEEXR connects to XR32
 RFBAUDS=1200 ; Radio channel baud rate
 EXCLUDE=NOCALL,PK232
 NODESINTERVAL=0 ; Nodes broadcast time interval (min)
 QUALITY=0 ; 0 disables L3/L4 frames.
 MINQUAL=50
 TXDELAY=450 ; Milli-seconds
 TXTAIL=75 ; Milli-seconds
 RETRIES=5
 FRACK=7000 ; Milli-seconds
 PACLEN=128 ; Adaptive paclen when paclen '0'
 MAXFRAME=1 ; Adaptive maxframe when paclen '0'
 SLOTTIME=120
 RESPTIME=1500
 USERS=20
 SESSLIMIT=20
 MHEARD=15
 MHFLAGS=7
 DIGIFLAG=0 ; Do not digipeat
 DIGIPORT=0 ; Digipeat on this channel
 BCAST=FBB,MAIL ; Destination FBB and MAIL
 BCFROM=ZS0MEE ; From ZS0MEE BBS
 PIPE=11 ; Pipe to ZS0MEE BBS (Port-11)
 PIPEFLAG=515 ; UI/Non-UI (*not*) + Bidirectional
ENDPORT
;

;---
;
PORT=11
 ID=AXIP Link - ZS0MEE LinFBB BBS.
 INTERFACENUM=10 ; AXIP
 IPLINK=192.168.0.11 ; LinFBB BBS (ZS0MEE)
 SESSLIMIT=5
 MHEARD=10
 MHFLAGS=7
 NODESINTERVAL=0 ; Nodes broadcast time interval (min)
 FRACK=7000 ; Made same as radio ports (seconds)
 PACLEN=128 ; Adaptive paclen when '0'
 MAXFRAME=1 ; Adaptive maxframe when paclen '0'
 RETRIES=5
 QUALITY=0 ; 0 disables L3/L4 frames.
 BCAST=FBB,MAIL
 BCFROM=ZS0MEE ; From ZS0MEE BBS
ENDPORT
;

Note the ‘IPLINK=192.168.0.11’ in Port 11. This is the address that must be placed into ‘/etc/ax25/ax25-
up’ and at the bottom of the ‘/etc/ax25/ax25ipd.conf‘ files.

There is a bi-directional pipe in Port 2 configured with UI/Non-UI (*not*) (pipeflags=515) with the other end
connecting to Port 11. This allows calls from radio users on Port 2 to connect direct to the LinFBB BBS
without first logging onto the XR32 Router, then connecting to the BBS. If additional radio ports are
installed, a bi-directional pipe from the new radio port can also be pointed to Port 11 to allow BBS access
on that radio port.

In my configuration a radio user can connect to the BBS by typing ‘C ZS0MEE’. A radio user can connect
to the XR32 Router by typing ‘C ZS0MEE-2‘ or ‘C MEEXR‘.

A problem I found while testing this configuration was that I had ‘digital feedback’ when the radio
transmitter sent data. It was picked up by the receiver and sent to the TNC which sent it back to XR32.
This caused the XR32 to repeat what was transmitted continuously until I switched the radio off.

I had initially taken the audio from my receiver, before the squelch and amplified it a bit before sending it to
the TNC. My radio was designed to block the squelch when transmitting to prevent the TX audio from
being heard in the loudspeaker. I fitted an IN4148 diode and a 10k resistor in series to the base of my
added transistor circuit and connected to a switched 8V TX PTT line. When TX’ing, the audio stage
transistor was switched hard-on preventing any audio from passing through – no more ‘digital feedback and
looping – and it was fast.

 .------------o--------RES-----------o +12V
 I I
 IN4148 10k R I

 8 +v o---DIODE---RES---------. E o------------I I----------> AF OUT
 TX PTT a k \ S /

 \I I/ collector
 AF IN >-------------I I-----------------o--------I
 1mV I I\ emitter

 R \
 E I
 S I
 I I
 o---------------------------------o-----------o--------------------------o GND

We have now ended up with a configuration where the XR32 is controlling nearly everything. LinFBB can
still have its own Telnet session via port 6300 like it did before this change and doesn’t involve the XR32,
but the radio port(s) would now be controlled by the XR32 Router to access LinFBB. The LinFBB BBS is
also accessible from the XR32 Router itself.

In the XROUTER.CFG file, add ‘COMMAND=BBS C 11 ZS0MEE S‘. This will allow any user who is
connected to the XR32 Router to just type ‘BBS<enter>’. This will connect the user straight to the LinFBB
BBS. The ‘C 11 ZS0MEE’ will connect to the BBS on Port 11. The ‘S’ at the end will return the user to the
XR32 command prompt instead of disconnecting the user totally from the Router. When a user types
‘?<enter>’, a help list is presented and at the bottom of the list will be seen the command ‘BBS’.

 ----------------------- ----------------------- -----------------------

I I I I I I----o Telnet
I I AX25 I I AXIP<>AX25 I I 6300
I RADIO PORT I----------------------I XR32 I----------------------I LinFBB I
I I I I I I
I I I I I I

 ------------------------ ----------------------- ------------------------

Currently I can’t get the unproto boadcasts sent from LinFBB to go out of the radio port and have instructed
my radio users to edit their Winpack configuration to not do sync-requests. This isn’t a problem because
Winpack will interrogate LinFBB on its autotimer and get a list of message/bulletin headers to work from.

My final ‘issue’ is that XR32 ‘crashes’ and closes when WinPack requests a compressed download. I’ve
asked my radio users to download/upload in plain-text until I can figure this problem out.

ooOoo

